Long Cane Design and Biomechanics: Factors That Affect Drop-off and Obstacle Detection

Dae Kim, Ph.D., COMS, CLVT
Associate Professor

Robert Wall Emerson, Ph.D., COMS
Professor

Department of Blindness and Low Vision Studies
Western Michigan University

International Mobility Conference 16 (June 2017)
Cane Techniques

- Two-point touch technique
- Constant contact technique
Cane Travel Performance

- Safety
 - Coverage (Obstacle Detection)
 - Drop-off Detection
 - Walking Surface Texture Discrimination
- Efficiency
 - Time to Destination
Drop-off Detection

- Critical for blind travelers to detect drop-offs reliably
 - Curb
 - Uneven surfaces
 - Pothole, sunken slab
Obstacle Detection

- Critical for blind travelers to detect obstacles reliably
 - Trip over obstacles (construction cones, bricks, etc.)
 - Collision with obstacles (sign posts, etc.)
Factors Related to Drop-off Detection

Drop-off Detection

Cane-technique-related Factors
- Type of Cane Technique Used in Drop-off Detection
 - Cane swing arc width
 - Amount of Practice

User Characteristics
- Age of Cane User
- Age at Onset of Visual Impairment

Ergonomic Factors
- Type of Cane Tip
 - Cane Length
 - Cane Weight

Environmental Factors
Factors Related to Obstacle Detection

Obstacle Detection

Cane-technique-related Factors
- Type of Cane Technique Used
- Cane swing arc width

User Characteristics

Ergonomic Factors
- Type of Cane Tip
- Cane Length

Environmental Factors
Methods
(Drop-off Detection Studies)
Recruitment Criteria

- Legal blindness with no other disabilities
- Familiarity with both techniques
- At least one month of cane training
- 13-16 cane users participated in individual studies
Drop-off Detection Experiment

• Test site
 ▫ 8-foot-wide concrete hallway in CHHS building basement
• Sleep-shades and headphone set
Apparatus

Participant Approaching the Drop-off on the 32-foot-long Walkway Used in the Study
Experiment Procedure

- Starting point randomization
- 64-96 trials per participant
- Block randomization to prevent order effect
- Block randomization to randomly select drop-off depth for each trial
Key Findings
(Drop-off Detection)
Previous Findings

• Drop-off detection performance (Significant factors)
 ▫ Constant contact (CC) better than two-point touch (TT)
 ▫ CC’s advantage is larger for less experienced
 ▫ CC with marshmallow roller (disadvantageous tip) was still better than TT with marshmallow (advantageous)
 ▫ Younger cane users were better
 ▫ Individuals with earlier-onset VI were better
 ▫ Heavier cane was better
 ▫ Standard length was better than extended length (16” longer)
Previous Findings

- Drop-off detection performance (Factors that were NOT significant)
 - Preferred cane technique
 - Cane shaft rigidity
 - Cane tip (marshmallow tip vs. marshmallow roller tip)
Methods
(Obstacle Detection Studies)
Recruitment Criteria

The same as drop-off detection studies
Obstacle Detection Experiment

- Test site
 - WMU’s CHHS building 4F hallway
- Sleep-shades and headphone set
Apparatus

Circular objects of different sizes (diameters of 2”, 6”, 10”, and 14”) and heights (1”, 3”, 5”, and 7”) were created with Styrofoam and linoleum.
Apparatus

Objects presented either at the midline of the walking path or slightly off to the side following a randomized schedule. A 20-foot-long rail (3 feet high), built with PVC pipes, was placed beside the walking path for participants to trail with the free hand.
Experiment Procedure

• Starting point randomization
• 128-192 trials per participant
• Block randomization to randomly select obstacle size and height for each trial
Key Findings (Obstacle Detection)
Key Findings

- Obstacle detection performance
 - CC better than TT for short obstacles
 - Bundu basher tip was better than marshmallow tip
 - Cane length and cane swing arc width didn’t have a significant effect
Discussion

• One of the most significant and prevailing finding
 ▫ Presence of CC’s advantage over TT in drop-off detection

• Particularly noteworthy is large effect size
 ▫ 50% threshold: half as large
 ▫ Large drop-offs
 ▫ TT: missed 1 in 15
 ▫ CC: missed less than 1 in 100
Discussion

• Surprising finding
 ▫ Failure to detect even tall obstacles at least 1 in 3 times
 ▫ Consistent with Uslan (1978)’s finding (68.9% path coverage rate)
 ▫ Bundu basher tip somewhat improves the obstacle detection rate (from 35% to 25% misses)
 ▫ Raises a question of whether we should modify the current cane techniques
Future Study Plans

- Biomechanical and ergonomic factors affecting drop-off and obstacle detection
- Surface texture discrimination
- Ecological validity
Future Drop-off Detection Studies

• Factors to be examined:
 1) Cane-holding hand position (centered vs. off to the side)
 2) Gait-swing coordination (rhythm & step)
 3) Cane grip (rubber, cork/foam, wood)
 4) Modification of conventional cane techniques
Future Obstacle Detection Studies

• Factors to be examined:
 1) Cane-holding hand position (centered vs. off to the side)
 2) Modification of conventional cane techniques
Future Texture Discrimination Studies

• Factors to be examined:
 1) Type of cane tip (shape, size, and presence of bearings)
 2) Type of cane grip (rubber, cork/foam, wood)
 3) Cane shaft material (flexible vs. rigid)
Acknowledgement

• Dr. Rob Wall Emerson (WMU)
• Dr. Koorosh Naghshineh (WMU)
• Grad assistants
• Study participants
Acknowledgement

• The long cane design and biomechanics project has been supported by Grant No. R15 EY 024149-01 from the National Eye Institute, National Institutes of Health.
Published Articles

Published Articles

